A Noncommutative Chromatic Symmetric Function

نویسندگان

  • David D. Gebhard
  • Bruce E. Sagan
چکیده

In [12], Stanley associated with a graph G a symmetric function XG which reduces to G’s chromatic polynomial XG(n) under a certain specialization of variables. He then proved various theorems generalizing results about XG(n), as well as new ones that cannot be interpreted on the level of the chromatic polynomial. Unfortunately, XG does not satisfy a Deletion-Contraction Law which makes it difficult to apply the useful technique of induction. We introduce a symmetric function YG in noncommuting variables which does have such a law and specializes to XG when the variables are allowed to commute. This permits us to further generalize some of Stanley’s theorems and prove them in a uniform and straightforward manner. Furthermore, we make some progress on the (3+1)-free Conjecture of Stanley and Stembridge [14].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MacMahon Symmetric Functions, the Partition Lattice, and Young Subgroups

A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal action of the symmetric group. In this article, we show that the MacMahon symmetric functions are the generating functions for the orbits of sets of functions indexed by partitions under the diagonal action of a Young subgroup of a symmetric group. We define a MacMahon chr...

متن کامل

Hopf Algebra of Building Sets

The combinatorial Hopf algebra on building sets BSet extends the chromatic Hopf algebra of simple graphs. The image of a building set under canonical morphism to quasi-symmetric functions is the chromatic symmetric function of the corresponding hypergraph. By passing from graphs to building sets, we construct a sequence of symmetric functions associated to a graph. From the generalized DehnSomm...

متن کامل

Noncommutative irreducible characters of the symmetric group and noncommutative Schur functions

In the Hopf algebra of symmetric functions, Sym, the basis of Schur functions is distinguished since every Schur function is isomorphic to an irreducible character of a symmetric group under the Frobenius characteristic map. In this note we show that in the Hopf algebra of noncommutative symmetric functions, NSym, of which Sym is a quotient, the recently discovered basis of noncommutative Schur...

متن کامل

Chromatic classical symmetric functions

In this note we classify when a skew Schur function is a positive linear combination of power sum symmetric functions. We then use this to determine precisely when any scalar multiple of a skew Schur function is the chromatic symmetric function of some graph. As a consequence we prove that of the classical bases for symmetric functions only certain scalar multiples of the elementary symmetric f...

متن کامل

A noncommutative symmetric system over the Grossman-Larson Hopf algebra of labeled rooted trees

In this paper, we construct explicitly a noncommutative symmetric (NCS) system over the Grossman-Larson Hopf algebra of labeled rooted trees. By the universal property of the NCS system formed by the generating functions of certain noncommutative symmetric functions, we obtain a specialization of noncommutative symmetric functions by labeled rooted trees. Taking the graded duals, we also get a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999